An Intelligent Multi-Restart Memetic Algorithm for Box Constrained Global Optimisation

نویسندگان

  • Jianyong Sun
  • Jonathan M. Garibaldi
  • Natalio Krasnogor
  • Qingfu Zhang
چکیده

In this paper, we propose a multi-restart memetic algorithm framework for box constrained global continuous optimisation. In this framework, an evolutionary algorithm (EA) and a local optimizer are employed as separated building blocks. The EA is used to explore the search space for very promising solutions (e.g., solutions in the attraction basin of the global optimum) through its exploration capability and previous EA search history, and local search is used to improve these promising solutions to local optima. An estimation of distribution algorithm (EDA) combined with a derivative free local optimizer, called NEWUOA (M. Powell, Developments of NEWUOA for minimization without derivatives. Journal of Numerical Analysis, 28:649-664, 2008), is developed based on this framework and empirically compared with several well-known EAs on a set of 40 commonly used test functions. The main components of the specific algorithm include: (1) an adaptive multivariate probability model, (2) a multiple sampling strategy, (3) decoupling of the hybridisation strategy, and (4) a restart mechanism. The adaptive multivariate probability model and multiple sampling strategy are designed to enhance the exploration capability. The restart mechanism attempts to make the search escape from local optima, resorting to previous search history. Comparison results show that the algorithm is comparable with the best known EAs, including the winner of the 2005 IEEE Congress on Evolutionary Computation (CEC2005), and significantly better than the others in terms of both the solution quality and computational cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model and Solution Approach for Multi objective-multi commodity Capacitated Arc Routing Problem with Fuzzy Demand

The capacitated arc routing problem (CARP) is one of the most important routing problems with many applications in real world situations. In some real applications such as urban waste collection and etc., decision makers have to consider more than one objective and investigate the problem under uncertain situations where required edges have demand for more than one type of commodity. So, in thi...

متن کامل

A multi-cycled sequential memetic computing approach for constrained optimisation

In this paper, we propose a multi-cycled sequential memetic computing structure for constrained optimisation. The structure is composed of multiple evolutionary cycles. At each cycle, an evolutionary algorithm is considered as an operator, and connects with a local optimiser. This structure enables the learning of useful knowledge from previous cycles and the transfer of the knowledge to facili...

متن کامل

Combining Monte-Carlo and Hyper-heuristic methods for the Multi-mode Resource-constrained Multi-project Scheduling Problem

Multi-mode resource and precedence-constrained project scheduling is a well-known challenging real-world optimisation problem. An important variant of the problem requires scheduling of activities for multiple projects considering availability of local and global resources while respecting a range of constraints. This problem has been addressed by a competition, and associated set of benchmark ...

متن کامل

Retracted: Using genetic algorithm approach to solve a multi-product EPQ model with defective items, rework, and constrained space

The Economic Production Quantity (EPQ) model is often used in the manufacturing sector to assist firms in determining the optimal production lot size that minimizes overall production-inventory costs. There are some assumptions in the EPQ model that restrict this model for real-world applications. Some of these assumptions are (1) infinite space of warehouse, (2) all of the pr...

متن کامل

A multi-objective memetic algorithm for risk minimizing vehicle routing problem and scheduling problem

In this paper, a new approach to risk minimizing vehicle routing and scheduling problem is presented. Forwarding agents or companies have two main concerns for the collection of high-risk commodities like cash or valuable commodities between the central depot and the customers: one; because of the high value of the commodities transported, the risk of ambush and robbery are very high. Two; the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Evolutionary computation

دوره 21 1  شماره 

صفحات  -

تاریخ انتشار 2013